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With respect to a simple graph G, a vertex labeling ϕ: V(G) > {1,2,..., 
k) is known as k-labeling. The weight corresponding to an edge xy in 
G, expressed as wϕ (xy), represents the labels sum of end vertices x and 
y, given by wϕ (xy) = ϕ(x) + ϕ(y) A vertex k-labeling is expressed as 
an edge irregular k-labeling with respect to graph G provided that for 
every two distinct edges e and f, there exists wϕ(e) ≠ wϕ(f) Here, the 
minimum k where the graph G possesses an edge irregular k-labeling 
is known as the edge irregularity strength with respect to G, expressed 
as (G). Here, we examine the edge irregularity strength’s exact value 
of corona product with respect to two paths Pn and Pm ,  in which n ≥ 
2 and m = 3, 4, 5.
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INTRODUCTION 
Suppose G is a connected, simple as well as 
an undirected graph having vertex set V(G)   
with edge set E(G). Here, the mapping of a 
set of graph elements onto a set of numbers 
(particularly positive integers) is referred to as 
labeling. Moreover, the labelings are expressed 
as edge labelings or vertex labelings, depending 
on whether the domain refers to the edge or 
the vertex set, accordingly. The labeling is 
denoted as a total labeling provided that the 
domain is given by V(G) ∪ E(G). Therefore, 
for any edge k-labeling δ:E(G)→{1,2,..., k}, 
the corresponding weight of a vertex x ∈ (G)  is 
given by

wδ(x) = ∑δ(xy),

in which the sum is taken with respect to all 
vertices  adjacent to x. 

Chartrand et al. [9] established the edge 
k-labeling δ with respect to a graph G provided 
that wδ(x) = ∑δ(xy) for every vertices x,y ∈ V (G) 
having x ≠ y. These labelings were expressed as 
irregular assignments with minimum k while G  
possessing an irregular assignment employing 
labels at most  is known as the irregularity 
strength s(G) with respect to a graph G. 

Moreover, Baca et al. [6] expressed a vertex 
irregular total k-labeling with respect to a graph 
G to represent a total labeling of G given by 
ψ:V(G) ∪ E(G)→{1,2,..., k},  , in which the total 
vertex-weights may be expressed as

Journal of Mathematical Sciences and Informatics, Volume 2 Number 1, June 2022, 51-58



Roslan Hasni et al.	 			   52

Journal of Mathematical Sciences and Informatics, Volume 2 Number 1, June 2022, 51-58

and are distinct for all corresponding vertices. 
In other words, wt(x) ≠ wt(y) for all distinct 
vertices x, y ∈ V(G). Here, the minimum k for 
G to have a vertex irregular total k-labeling 
represents the total vertex irregularity strength 
with respect to G, expressed as tvs(G). The 
authors also expressed the total labeling ψ: 
V(G)∪E(G)→{1,2,...,k) to represent an edge 
irregular total k-labeling with respect to the 
graph G provided that for every two distinct 
edges xy and x'y' of G, we have wt(xy) = ψ (x)+ 
ψ(xy)+ ψ(y) ≠ wt(x'y') = ψ(x') + ψ(x'y') + ψ(y'). 
Moreover, the total edge irregularity strength, 
tes(G), is expressed as the minimum k where 
G possesses an edge irregular total k-labeling. 
[8] provides the latest and most comprehensive 
review of graph labelings.

A vertex k-labeling ϕ: V(G)→{1,2,...,k)  is 
expressed as an edge irregular k-labeling with 
respect to the graph G provided that for every 
two distinct edges e and f, there exists wϕ(e) ≠ 
wϕ(f), Here, the edge’s weight e = xy ∈ E(G) is 
wϕ(xy) = ϕ(x)+ ϕ(y). Moreover, the minimum  k 
where the graph G possesses an edge irregular 
k-labeling is denoted as the edge irregularity 
strength with respect to G, expressed by es(G)  
[1].

The authors of [1] calculated the edge 
irregularity strength’s exact values (es) for 
numerous graph families, including stars, 
paths,  double stars, as well as  the Cartesian 
product with respect to  two pathways. 
Moreover, Mushayt [5] examined the edge 
irregularity strength with respect to Cartesian 
product of star, cycle corresponding to path P2 
as well as strong product of path Pn with P2. 
Furthermore, Tarawneh et al. [10-12] examined 
the exact value with respect to edge irregularity 
strength of corona product for graphs having 
paths, cycles as well as cycle having isolated 
vertices. In addition, Ahmad [2] investigated 
the edge irregularity strength’s the exact value 
of corona graph Cn nʘ mk1 (or called the sun 
graph Sn). Also, Ahmad et al. [3] examined the 
edge irregularity strength’s exact value with 
respect to various classes of Toeplitz graphs. 
Subsequently, Tarawneh et al. [13] examined the 

edge irregularity strength with respect to disjoint 
union for star graph including its subdivision. 
Meanwhile, Imran et al. [9] examined the edge 
irregularity strength’s exact value with respect 
to caterpillars, (n,t)-kite graphs, n-star graphs, 
cycle chains as well as friendship graphs. 
Moreover, Ahmad et al. [4] examined the edge 
irregularity strength with respect to several 
chain graphs including the joint concerning two 
graphs.

The theorem stated below establishes the 
lower bound with respect to the edge irregularity 
strength for a graph G.

Theorem 1. [1] Suppose G = (V,E) denote a 
simple graph having maximum degree ∆= ∆(G). 
We then have

In [10], the authors investigated the exact 
value with respect to the edge irregularity 
strength of corona product for path Pn that is P2, 
Pn having Sm, in which {n ≥ 2, m ≥ 3}. This paper 
discovers the exact value with respect to edge 
irregularity strength of corona product for path 
Pn with P3, Pn with P4 as well as Pn with P5, in 
which n ≥ 2.  

MAIN RESULTS
The corona product with respect to two graphs  
G as well as H, expressed by G ʘ H, denotes the 
graph yielded by employing one copy of G (with  
n vertices) and n copies H1, H2,..., Hn of H. Then, 
the G’s i-th vertex is joined to each vertex in Hi .

The corona product PnʘPm denotes a graph 
having the vertex set V(Pn ʘ Pm) = {xi, yi

j:1 ≤ i ≤ 
j ≤ m) as well as edge set E(Pn ʘ Pm) = {xi xi+1,1 
≤ i ≤ n -1}∪{xiyi

j:1 ≤ i ≤ n, 1 ≤ j ≤ m}∪{yi
jyi

j+1:1 
≤ i ≤ n, 1 ≤ j ≤ m-1}.

Below, we consider the exact value with 
respect to edge irregularity strength for Pn ʘ Pm 
for n ≥ 2 and m = 3,4,5.

Lemma 2. For any integer n ≥ 2, es(Pn ʘ 
Pm)=3n+1. 
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and

since

and

Proof. Assume that PnʘP3 is a graph having a 
vertex set denoted by V(PnʘP3) = {xi ,

 yi
j+1:1 ≤ i 

≤ n, 1 ≤ j ≤ 3 as well as the edge set E(PnʘP3) 
= {xi,

 xi+1:1 ≤ i ≤ n-1}, ∪ {xi,
 yi

j:1 ≤ i ≤ n,1 ≤ j ≤ 
3}∪ {yi

j yi
j+1: 1 ≤ i ≤ n,1 ≤ j ≤ 2}.

According to Theorem 1, we have that 
es(PnʘP3)≥3n. Since every edge E(PnʘP3)\{xi,

 

xi+1} for 1≤ i ≤ n-1 denote a portion of complete 
graph K3, with respect to every edge irregular 
labeling, the smallest edge weight must be at 

least 3 of said edges. Thus, the smallest edge 
weight 2 as well as the largest edge weight 6n 
will be of edges xi,

 xi+1 . For this there will be two 
pair of adjacent vertices, for instance one pair 
of adjacent vertices assigned label 1, a second 
pair of adjacent vertices assigned label 3n, then 
there will be two distinct edges having the same 
weight. Therefore es(PnʘP3)≥3n+1. To show 
that es(PnʘP3)≤3n+1, we now express a vertex 
labeling ϕ1 (PnʘP3)→{1,2,...,3n+1} as follows:

Thus, the edge weights are distinct with 
respect to all pairs of different edges. Hence, 
the vertex labeling ϕ1 denotes an optimal edge 
irregular (3n+1)-labeling, which then fullfils the 
proof.

Example 1. In Figure 1, we present the es  
labeling for graph P5ʘP3 with vertex labels and 
edge weight for the case n=5 .

Figure 1: Graph  P5ʘP3 with  es labelling



Roslan Hasni et al.	 			   54

Journal of Mathematical Sciences and Informatics, Volume 2 Number 1, June 2022, 51-58

Lemma 3. For any integer n ≥ 2, es (PnʘP4) = 
4n +1.

Proof. Let PnʘP4 express a graph having vertex 
set given by V(PnʘP4) = {xiyi

j:1 ≤ i ≤ n, 1 ≤ j ≤ 
4} and the edge set E(Pn ʘ P4) = {xi xi+1,1 ≤ i ≤ 
n -1}∪{xiyi

j:1 ≤ i ≤ n, 1 ≤ j ≤ 4}∪{yi
jyi

j+1:1 ≤ i ≤ 
n, 1 ≤ j ≤ 3}.

According to Theorem 1, we have that 
es(PnʘP4) ≥ 4n. Since every edge E(Pn ʘ P4)\  {xi 
xi+1} for 1 ≤ i ≤ n -1 denote a portion of complete 
graph K3, with respect to every edge irregular 

labeling, the smallest edge weight must be at 
least 3 of said edges. Therefore, the smallest 
edge weight 2 and the largest edge weight 8n 
will be of edges xi xi+. For this there will be two 
pairs of adjacent vertices such that one pair of 
adjacent vertices assign label 1, a second pair of 
adjacent vertices assign label 4n, then there will 
be two distinct edges having the same weight. 
Therefore es(PnʘP4) ≥ 4n+1. To show that 
es(PnʘP4) ≤ 4n+1, we define a vertex labeling ϕ2 
(PnʘP4) →{1,2,...,4n+1}as given below:

ϕ2 (xi) = 4i-1, if 1 ≤ i ≤ n

and

since

and

Thus, the edge weights are distinct with 
respect to all pairs of different edges. Therefore, 
the vertex labeling ϕ2 denotes an optimal edge 
irregular (4n+1)-labeling, which then completes 
the proof.

Example 2. In Figure 2, we present the es 
labelling for graph (P4ʘP4) with vertex labels 
for the case n=4.

Figure 2: Graph (P4ʘP4) with es labelling
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Lemma 4. For any integer n ≥ 2,es(PnʘP5).= 
5n+1.
Proof. Let PnʘP5 express a graph having the 
vertex set V(PnʘP5) = {xi,

 yi
j:1 ≤ i ≤ n, 1 ≤ j ≤ 

5} and the edge set E(PnʘP5) = {xi,
 xi+1:1 ≤ i ≤ 

n-1}∪ {yi
j, yi

j+1:1 ≤ i ≤ n,1 ≤ j≤ 4}. According to 
Theorem 1, we have that es(PnʘP5) ≥ 5. Since 
every edge E(PnʘP5)\{xi,

 xi+1} for 1 ≤ i ≤ n-1 
represent a portion of complete graph k3, then, 
with respect to every edge irregular labeling, 

the smallest edge weight must be at least 3 
of said edges. Therefore, the smallest edge 
weight 2 and the largest edge weight 10n will 
be of edges xi,

 xi+1. For this there will be two 
pairs of adjacent vertices such that one pair of 
adjacent vertices assign label 1, second pair of 
adjacent vertices assign label 5n, then there will 
be two distinct edges having the same weight. 
Therefore es(PnʘP5) ≥ 5n+1. To show that 
es(PnʘP5) ≤ 5n+1, we define a vertex labeling 
ϕ3(PnʘP5)→{1,2,..., 5n+1} as given below:

and

since

and
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Thus, the edge weights are distinct with 
respect to all pairs of different edges. Hence, 
the vertex labeling ϕ3 refers to an optimal edge 
irregular (5n+1)-labeling, which fullfils the 
proof.

Example 2. In Figure 3, we present the es 
labelling for graph (P4ʘP5) with vertex labels 
for the case n=4 .

Figure 3: Graph (P4ʘP5) with es labelling

The following main result follows 
immediately from Lemmas 2, 3 and 4.

Theorem 5. For any real number n≥2  and m = 
3,4,4, es (PnʘPm) = 5n+1.

CONCLUSION 
This study presents the exact values for edge 
irregularity strength with respect to corona 
graphs for path Pn with P3, Pn with P4 and Pn  
with P5. Recently, the case of corona graphs of Pn  
with P6 was done by Alrawajfeh et al. [14]. For 
the next research, we propose to work on some 
generalizations concerning the estimation of 
upper bound or determination of the exact value 
with respect to the edge irregularity strength of 
corona graphs of Pn with Pm for any n, m ≥ 2. 
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