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This article is devoted to the construction and study of the exponential 
stability of an explicit upwind difference scheme for a mixed problem for 
the linear system of the Saint Venant equation. For the numerical solution 
of the mixed problem for the linear system of the Saint Venant equation, an 
explicit upwind difference scheme is constructed. For a numerical solution, 
a discrete Lyapunov function is constructed and an a priori estimate for it is 
obtained. On the basis of the discrete Lyapunov function, the exponential 
stability of the numerical solution of the initial-boundary-value difference 
problem of the mixed problem for the linear system of the Saint Venant 
equation is proved. A theorem on the exponential stability of the numerical 
solution of the initial-boundary-value difference problem is proved. The 
behavior of the discrete Lyapunov function is numerically investigated 
depending on the algebraic condition of exponential stability of the 
numerical solution of the mixed problem. The results of the theorem on the 
exponential stability of the numerical solution are confirmed by a specific 
example of an open channel flow problem.
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INTRODUCTION 
It is known that the behavior of water in rivers, 
lakes, oceans, as well as in small bodies is 
described by the Saint-Venant equations [1]. 
The Saint-Venant equations are a system of 
hyperbolic partial differential equations that 
describe flows below the surface of a fluid.

The one-dimensional theory of unsteady 
flows without discontinuities, i.e., flows that 
are not accompanied by the formation of 
discontinuous waves, can be considered the 
most developed today (including the problem 
of natural flooding). The main direction of 
research in the field of calculating unsteady 
motion described by the Saint-Venant equations 
is the development of methods for numerical 
calculation that are convenient when using 
computer technology. An important point in 

the construction of a numerical solution to the 
Saint-Venant equations is the stability of the 
difference scheme. The equations considered in 
the paper are differential equations of hyperbolic 
type, which does not always ensure the absolute 
stability of the method. The solution of these 
issues was and remains one of the crucial tasks.

The purpose of this work is to develop 
and prove the stability of an explicit difference 
scheme for determining the numerical solution 
of a mixed problem for the system of the Saint-
Venant equations. In this paper, we use the 
Lyapunov method to study the exponential 
stability of the solution of the nonhomogeneous 
Saint-Venant equations with arbitrary friction 
and a slope that changes in space. The advantage 
is that when using this method, you only need 
to measure the value of the desired functions at 
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the boundary, which is much easier for practical 
implementations.

Currently, various methods for solving the 
Saint-Venant equations have been developed, 
such as the method of characteristics, the method 
of grids, the Lyapunov quadratic function 
method, the variational method, etc. In [2] for 
solving one-dimensional equations of unsteady 
motion in open canals, an implicit difference grid 
scheme was developed that allows calculations 
to be performed with a large time step. It was 
especially important for calculating floods in 
large rivers, when the duration of the calculated 
process took quite a long time. However, there is 
no description of the algorithm and justification 
of the finite difference method itself.

The study by [3] is devoted to exponential 
stability of non-linear Saint-Venant equations 
in differential form. An explicit quadratic 
Lyapunov function is constructed, and the local 
exponential stability is proved. In the book [4], 
the theory of symmetric hyperbolic system 
is described. Particularly, in the case of two 
spatial and one temporal variables, the existence 
theorem of a dissipative mixed problem is 
stated. Numerical calculations of simple models 
are given as examples.

The monograph [5] is devoted to the 
study of mixed problems for one-dimensional 
hyperbolic systems in canonical form. Lyapunov 
stability is established in various functional 
spaces, in particular, many practical models are 
considered. However, the problems of numerical 
solution for mixed problems are not considered. 

In [6] for telegraph equation, the discrete 
Lyapunov function is constructed and its 
decreasing is proved. Using such approach 
to the Saint-Venant equations is due to the 
difficulties that require additional research. For 
two-dimensional hyperbolic equations with 
dissipative boundary conditions, the exponential 
stability of the solution is established by the 
Lyapunov function method in [7]. Whereas, in 
[8] algebraic conditions for exponential stability 
of the solution of mixed problems of linear Saint-
Venant equations are obtained. The discussion 
of numerical solution is not considered.

For one-dimensional quasi-linear hyperbolic 
systems, problems with dissipative boundary 
conditions that guarantee exponential stability 
of classical solutions are considered in [9]. 
There are no studies on numerical calculations. 
In [10], the second kind Volterra transformation 
and reversible Fredholm transformation optimal 
management problems for general linear 
hyperbolic systems are investigated. 

Note that in the works [3, 5, 7–10] we study 
the issues related to the theoretical aspects of 
the solvability and stability of mixed problems 
for hyperbolic systems and the issues of 
constructing numerical solutions and the stability 
of difference schemes are not considered. It is 
crucial to consider the numerical calculation of 
mixed problems for hyperbolic systems due to 
the fact that the dimension of the linear algebraic 
equations system increases with increasing 
dimension of the considered area. This leads to 
an unreasonably large amount of computing and 
requires the involvement of high-performance 
computing equipment.

In [11] the use of various difference grids 
(rectilinear and curved) for the numerical 
calculation of linear partial differential 
equations is shown. The study does not consider 
the problems of the Saint-Venant equations, 
this is apparently due to the nonlinearity of the 
equation.

The discretization of equations describing 
the unsteady flow of a viscous incompressible 
fluid is considered in [12], employing the finite 
difference method and the splitting scheme 
by physical factors on a rectangular non-
uniform grid with a staggered arrangement of 
nodes. However, there is no justification for 
the convergence and stability of the difference 
scheme.

In [13], the authors proposed a class of 
difference schemes for hyperbolic systems of 
equations that have several forms of notation. 
The stability of the proposed difference schemes 
is investigated using the technique of energy 
integrals. However, their application to the study 
of exponential stability is a rather difficult task.

The work [14] is devoted to the study of 
initial boundary value problems for a class 
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of three-dimensional quasi-linear hyperbolic 
systems. An a priori estimate of the problem 
solution by means of the energy integral method 
is obtained. The problems of the numerical 
solution and its stability have not been studied. 
A linear initial-boundary value problem of the 
dynamics of fluid-saturated porous media, 
described by three elastic parameters in a 
reversible hydrodynamic approximation, is 
solved numerically in [15]. The issue of the 
computational model adequacy remains open.

In [16], a problem for the Saint-Venant-
Exner equation (SVE), which describes the 
dynamics of water in a canal filled with 
sediments with arbitrary values of the canal 
bottom slope, friction, porosity, as well as 
the interaction of water and sediment under 
subcritical or supercritical flow regime is 
considered. However, this is the subject of 
further research. We consider the case of a canal 
without sediment. 

The book [17] is devoted to the solution 
methods of high order algebraic systems, 
which appear when using the grid method to 
the problems of mathematical physics. Along 
with iterative methods, which are most widely 
used in computational practice in solving these 
problems, direct methods are also described. 
Here we upwind explicit difference scheme in 
relation to the Saint-Venant equations.

According to [3], we will consider a 
hyperbolic system with variable coefficients and 
with lower-order terms 

 (1)

and with boundary conditions at x = 0,L, 
respectively,

    (2)

and with initial data at t = 0:

   (3)
where

* * *
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where y1(t,x), y2(t,x) are unknown functions to be 
determined;  H(t,x) = H*(x), V(t,x) = V*(x) are the 
stationary solution of the system of Saint-Venant 
equations and  H(t,x) is the water depth, V(t,x) 
is the horizontal water velocity functions of two 
variables which is unknown to be determined. 
The slope C(●)∈C2([0,L])  is the channel bottom 
slope, g is the constant gravity acceleration and k 
is a constant friction coefficient. For a description 
and meaning of other parameters, see [3].

DIFFERENCE SPLITTING SCHEME
We will build a difference grid in area G = {(t,x): 
0 ≤ t ≤ T, 0 ≤ x ≤ L} with steps Δt in the direction  
t and Δx in the direction x. The nodal points of 
the difference mesh (meaning the intersection of 

κ 

straight lines t = tκ   κΔt and x = xj      jΔx) are 
denoted by (tκ, xj). The set of nodal points of the 
difference grid is denoted by Gh, where

Gh     {(tκ,xj):κ=0,…,Κ;j=0,…,J}

and the values of the numerical solution at the 
nodal points are denoted by

(yi)j = yi (t
κ,xj),i=1,2;κ=0,…,Κ;j=0,…,J.

We select the steps of the difference grid Δt,  
Δx in such a way that the equalities  KΔt=T and 
JΔx=L.    

To find a numerical solution for the mixed 
problem of equations (1) – (3) over the difference 
grid Gh, we propose the following upwind 
difference splitting scheme for the lower terms

(4)

(5)

Boundary conditions (2) are approximated 
in the following way,

                                                                        (6)

Initial conditions (3) are approximated as 
follows,

                                                                         (7)                

Suppose that the steps of the difference 
grid satisfy the Courant-Friedrichs-Levy (CFL) 
condition,

                                                            

             (8)
  

Now let us investigate the question of 
the stability of the numerical solution for the 
difference problem (4) - (7).  First, we give the 
definition of the exponential stability of the 
numerical solution for this difference problem.

Definition 2.1: The solution to the difference 
scheme (4) - (5) satisfying the boundary 
conditions (6) is called exponentially stable, if 
there are positive constants η > 0 and c > 0 such 
that for any initial condition ((y0 )j )    ((y10)j, 
(y20)j )

T ∈ L2({xj},j=0,...J;   2), the solution of the 
difference initial-boundary value problem (4) - 
(7) satisfies the inequality 

where L2({xj},j=0,...J;   2) is a discrete space L2, 
the norm in which is determined by the equality

and the norm is limited. 

Consider the difference boundary value problems 
(4) - (6) with a stationary solution
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In order to prove the exponential stability of the difference initial-boundary value problem (4) - 
(7), we propose the following function as a candidate for the discrete Lyapunov function

where

                                                                          
                                                                    
  (9)

(10)

a parameter μ > 0 and two functions f1∈C1 ([0,L];(0,+∞)), f2∈C1([0,L];(0,+∞)), are to be determined. 

Lemma 2.1: Let the conditions of Theorem 2.1 be satisfied. Then the following inequality holds:

                                                                      (11)

Proof: Let us denote by (ρ
1
) the Courant numbers (λ1)       for the first difference equation of system 

(4). Then the first difference equation of system (4) takes the form:

Taking into account this form of writing the first difference equation of system (4), we obtain 
the following expression for          

In this equality, instead of (z1)j, we substitute its value from the first difference equation of 
system (4),

k
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Let us simplify the expression inside the curly braces

According to the CFL condition, we have

whence it follows that the inequality  1 - (ρ1)j > 0. Consequently, the inequality (ρ1)j(1 - (ρ1)j > 0. 
Using the algebraic inequality 2ab ≤ a2+b2, we will get

Thus, for the expression Yj from above, we have the estimate

Then for the finite-difference relation             the following inequality holds,

or

The proof of Lemma 2.1 is complete.  This Lemma 2.1 implies the following Lemma 2.2.
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Lemma 2.2: Let the conditions of Theorem 2.1 be satisfied. Then the following inequality holds:

(12)

Proof: Let us introduce the notation

Now by Lemma 2.1 with accuracy O(Δx), we have the inequality

We use the difference distinction formula

                      

Then, according to this formula for difference distinction, we have

We will divide this sum into two parts and study each part separately,

 
                                                                                                                                                       (13) 

Summing up the first part of the right-hand side of this equality, we obtain

We pass to the transformation of the second part of the right side of equality (13)
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According to the formula for difference distinction of the product, we have

Let us make some transformation of the second term of this equality,

Then from (13) with accuracy  we obtain the following equality

Hence, this gives inequality (12).

Lemma 2.3: Let the conditions of Theorem 2.1 be satisfied. Then the following inequality holds:

The proof of Lemma 2.3 is similar to the proof of Lemma 2.1. For this reason, we omit the 
proofs of Lemma 2.3.

Lemma 2.4: Let the conditions of Theorem 2.1 be satisfied. Then the following inequality holds:
 
 

 (14)
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Here

The proof of Lemma 2.4 is similar to the proof of Lemma 2.2. For this reason, we omit the 
proofs of Lemma 2.4.

Lemma 2.5:  Let the conditions of Theorem 2.1 be satisfied. Then, with accuracy O(Δt), the 
following equality holds:

                                                                                                                                       (16)

Proof. For              we get the following expression

In this equality, instead of                  we substitute its value from the first difference equation 
of system (5),

Given the obvious equality

for the expression                 we obtain
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Thus, with accuracy O(Δt), equality (16) is true for the expression                 Lemma 2.5 is 
proved.  Similarly, one can prove the following lemmas.

Lemma 2.6:  Let the conditions of Theorem 2.1 be satisfied. Then, with accuracy O(Δt), the 
following inequality holds:

 (17)

Lemma 2.7: Let the conditions of Theorem 2.1 be satisfied. Then, with accuracy O(Δt+Δx), the 
following inequality holds:

 

 (18)

Proof. Indeed, taking into account equalities (13) and (16), we have

This finishes the proof of the Lemma 2.7.

In a similar way we can prove the following lemmas.

Lemma 2.8: Let the conditions of Theorem 2.1 be satisfied. Then, with accuracy O(Δt+Δx), the 
following inequality holds:

 
 

(19)
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Lemma 2.9: Let the conditions of Theorem 2.1 be satisfied. Then, with accuracy O(Δt+Δx),  the 
following inequality holds

 

(20)

Proof.  Indeed, taking into account equalities (18) and (19), we have
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Lemma 2.9 is proved.

It is easy to verify that, with accuracy O(Δt+Δx), the following inequality holds:

 

(21)

Here we have used the notation and, with precision O(Δx) equalities
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Thus, we have the inequality

                (22) 

where

In work [3], it is shown that there are functions f1 and f2 as well as a parameter µ1 such that for all 
µ∈(0,µ1], the quadratic form of I1 is positive for all k = 0,...,K. In addition, there is a 0<μ2<μ1, such 
that for any μ∈(0,μ2] the quadratic form I2 is negative for all k = 0,...,K. Therefore, from inequality 
(22), we obtain

(23)

Theorem 2.1: Let T > 0 and the discrete Lyapunov function is determined using the formula 
(9-10). If the steps of the difference grid satisfy the CFL condition (8) and the parameters of the 
boundary conditions (2), b0, b1  obey the inequality

(24)

then the numerical solution yj of the difference initial-boundary value problem (1) - (4) is 
exponentially stable in the L2-norm.

To prove Theorem 2.1, we use lemmas 2.1-2.9.

Proof of the theorem 2.1. Let the conditions of Theorem 2.1. be satisfied, then recursively 
applying inequality (23), we obtain the following inequality

We denote

k

k
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Then

Therefore

Thus, the last inequality means the 
exponential stability of the numerical solution of 
the yj of the mixed problem is in the L2-norm. 
And we have proved the theorem 2.1.

NUMERICAL EXAMPLE
We consider a pool of a prismatic open channel 
with a rectangular cross-section. As the values of 
the parameters of a numerical example, consider 
the following: сhannel length L = 2000 m, length 
step Δx = 0.667, time t = 1, time step Δt = 0.002, 
channel width W = 70 m, stream , Q = 70 m3/sec, 
the stream rate of change Q* =1, and constant 
coefficient of friction k = 0.001 .

Since we are considering runoff in river 
mode, the values H* and V* must correspond to 
the inequality gH* >V* 2, and only in this case,  
λ1(x),λ2(x) will take a positive value (λ1(x) > 0, 
λ2(x) > 0). In addition, we must not forget that H*    
(x)V* (x) = Q*. Taking into account the above 
H*  and V*, we have chosen as 

Accordingly, we take λ1(x), λ2(x) as 

We know that stationary states have three 
possible dynamics depending on the slope. In 
this numerical experiment, we consider the case 
when gC =           which means that friction and 
tilt “compensate” each other. Then the bottom 
slope will have the form  

k

*

*

*2

*



STABILITY OF THE NUMERICAL SOLUTION FOR THE MIXED PROBLEM                                             73
OF THE SAINT-VENANT EQUATIONS 

Journal of Mathematical Sciences and Informatics, Volume 1 Number 1, December 2021, 59-76

Initial conditions

 

Also, we will be given

     

  *
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Then, to determine the numerical solution 
(1) – (3), we use the difference splitting scheme 
for the lowest terms (4) – (7). According to 
Theorem 2.1, the conditions for exponential 
stability of the numerical solution take place in 
the fulfilment of the CFL conditions (8), as well 
as the parameters of the boundary conditions  
b0, b1must satisfy the inequality (11). Simple 
calculations show that the CFL condition

Obviously, the values b0= -0.001 and b1= 0.001 
satisfy the inequality (11), it means

        −0.001∈(−9.8×104,−1×10−8),

        0.001∈R\(−4.667×103,−4.41×10−6).

Let us give a graph of the L2- norm of the numerical solution in Figure 1 which confirms the 
exponential stability of the numerical solution in the L2- norm.

Figure 1: L2- norm of the numerical solution

Now consider the case when the CFL condition is not satisfied 
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In this case, the L2 - norm of the numerical solution increases with time, which means its 
instability (see Figure 2).

Figure 2: Instability of the numerical solution

Using the obtained numerical solution, the change in the height of the river flow at each moment 
Δt was calculated (see Figure 3).

Figure 3: 3D model of flow height change H(t,x) 

CONCLUSION 
In this note, as conclusion, we have:

1. Constructed an explicit upwind difference 
splitting scheme in the lowest terms for the 
linear Saint-Venant equations in the general 
case; 

2. Constructed a discrete analogue of the 
Lyapunov function for the numerical 
solution of the mixed problem for the 
system of linear Saint-Venant equations; 

3. Obtained an a priori estimate for the discrete 
Lyapunov function; 

4. Proved a theorem on the exponential 
stability of a numerical solution in the 
corresponding norm; and 

5. Performed numerical calculations 
confirming the theoretical results of the 
exponential stability theorem.
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