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This study investigates the combination of finite difference method (FDM) and 
the stabilized Lanczos method to solve various partial differential equation (PDE) 
problems.  This combination is wrapped in the algorithms called hybrid FDM-
RMEIEMLA and hybrid FDM-RLMinRes. FDM is the discretization method 
which converts the PDEs into algebraic formula, whereas both RMEIEMLA 
and RLMinRes are known as the stabilized Lanczos methods in solving large-
scale problems of SLEs. Their hybrids enable us to find the solutions of PDE 
problems accurately. There are at least three types of PDEs solved in this 
study, namely Helmholtz, wave, and heat equations. The convergence rate of 
our methods computed  using the residual norms || b - Axk ||. Numerical results 
showed that our proposed methods performed well in solving the various PDEs 
with small residual norms. 
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INTRODUCTION 
Partial Differential Equation (PDE) is a 
mathematical equation that consists of 
multivariable function and partial derivatives. 
The application PDEs can be found in 
several subjects, such as biological sciences, 
engineering, and physical problems [1]. PDEs 
are split into three general categories, they are 
hyperbolic, parabolic, and elliptic. There are 
several equations based on those categories, 
for instance, the Laplace and Poisson equations 
follow the elliptic PDE, heat equation and wave 
equation represent the parabolic and hyperbolic 
PDEs, respectively [2].

There are several numerical methods to 
solve PDEs, one of them is known as finite 
difference method (FDM), which typically 
discretizes the PDEs into the algebraic system 
of linear equations (SLEs), which is then 
solved numerically using an iterative solver [2]. 
Traditionally, the FDM can be combined with 
stationary methods, such as Gauss-Seidel and 

SOR to handle the SLEs part [2]. As we know 
that the stationary methods are only effective if 
the matrix of the SLEs is symmetric, otherwise 
alternative methods are needed. In this study, we 
employ the stabilized Lanczos methods to be 
combined with FDM to solve the PDE problems.
Lanczos Method, discovered by Cornelius 
Lanczos in 1950, was earlier employed to 
solve the eigen problems [3], before it was 
then developed to solve SLEs [4]. Particularly, 
Lanczos method can be efficiently used to 
solve high dimensional non-symmetric SLEs. 
In the 1990s, Lanczos method was developed, 
which led to several formulas, called Lanczos-
based formula [5], by applying the theory of 
Formal Orthogonal Polynomial (FOPs) into the 
recurrence formula of orthogonal polynomials. 
There are at least two new classes based on 
those formulas, namely Baheux-types [6] and 
Farooq-types [7]. They were all implemented in 
the form of Lanczos-type algorithms.

All Lanczos-based formulas experience 
breakdown which causes the algorithms to halt 
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before converging. It is not our focus here to 
discuss the breakdown, however, the readers 
can refer [8, 9] to find out more about the issue 
of breakdown. In relation to combating the 
breakdown, several authors have investigated 
some strategies. Amongst them, we are interested 
in investigating more deeply two algorithms 
called RLMinRes and RMEIEMLA, which 
applied the restarting strategy in Lanczos-based 
formula. The early algorithm is the Lanczos-
types combined with a restarting strategy with 
focus on using quality points to start with, 
particularly using the iterate with the minimum 
residual norm [10]. The latter algorithm is a 
Lanczos-based model combined with restarting 
strategy.  The model is based on interpolation 
and extrapolation to predict the new solution 
when the breakdown occurs [11, 12]. These two 

methods are called stabilized Lanczos-type [13], 
which are one of the latest strategies to combat 
breakdown and improve the convergence rates 
of Lanczos-type algorithms. These two methods 
are combined with the FDM to make the method 
applicable to solve PDE problems.

PRELIMINARY
A partial differential equation (PDE) is defined 
as a differential equation that involves partial 
derivatives of the dependent variables, called 
unknown function, in more than one variable 
x,y,z and t. Linearity of a PDE is defined as the 
unknown function  and its derivative entering 
the equation linearly [14]. A PDE solution is a 
function that depends on time and space or only 
space. 

Definition 2.1: The general formula of the second order PDE for two-dimensional space is as follows:

where a,b,c,d1,d2, and e are some constants. If b2- 
ac > 0, the PDE (1) is called hyperbolic. If b2- ac 
= 0, it is called parabolic, and is called elliptic if 
b2- ac < 0[15]. There are several phenomena in 
the real problems that can be described as those 
types of PDEs. In this study, we discuss some 
equations which can be included in one of the 
PDE types.

Helmholtz Equation
The Helmholtz Equation is widely used in 
mathematics and physics. This equation is 
named after  German physician Hermann von 
Helmholtz, who was an expert in psychology, 
physiology, and physics. He made a lot of 
contributions in several scientific areas [16]. 
Helmholtz Equation is a second order linear 
PDE and can be expressed as the general form 
as follows:

Definition 2.2: The general form of second 
order Helmholtz Equation:

where ∆=∇2 is the Laplacian, s is a scalar wave 
number and u(x,y) is the corresponding solution 
for PDE (2). The Helmholtz Equation can also 
be derived through the general wave equation as 
Definition 2.3 below.

Definition 2.3: General wave equation:

which shows the propagation of the wave 
travelling through a medium with a constant 
speed, α, while the Laplacian, ∆ gives out a 
two-dimensional space where ∆ = (∂2/∂x2)+ 
(∂2/∂y2). Suppose that the solution  is separable, 
we know that w(x,y,t)=u(x,y)v(t) as u and v are 
independent, and the function of (x,y) and (t)  
only, respectively. By substituting and rewriting 
them into (3), we have (1/α2v)(∂2v/∂t2)=∆u/u, 
then suppose that both sides are equal to a 
constant -s2, then we have ∂2v/∂t2+α2s2v=0. For 
function u, this gives us the Helmholtz Equation 
(4) below.

(1)

(2)

(3)
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Definition 2.4: Helmholtz equation:

∆2u+s2u=0

Wave Equation
Wave equation is an example of a hyperbolic 
partial differential equation. There are several 
fields of study such as dynamics of the 
population, tides and waves and nuclear reactors, 
which arose by hyperbolic PDE [17]. Hyperbolic 
equations can be used for the simulation of 
sound waves, electromagnetic waves, seismic 
waves, shock waves, and many other waveforms 
[15]. Wave equation is the simplest form of 
the one-dimensional hyperbolic equation. The 
wave equation, as written in (5), is important in 
mechanics. This goes on to describe the strings 
and wires motion and the flow of waves of water 
[18].

Definition 2.5: One dimensional wave equation:
 

Heat Equation
The heat equation is one of the general examples 
of a parabolic equation. For parabolic PDEs, 
numerical solution methods are important in 
areas such as heat transfer, nuclear reactor 
analysis, molecular diffusion, and fluid flow 
[19]. Heat equation (6) is the simplest form of the 
one-dimensional parabolic PDE [20]. The heat 
equation was first implemented by Jean-Baptiste 
Joseph Fourier (1768-1830) as the mathematical 
interpretation of heat flow in solids [21]. The 
heat equation could be generated from Fourier’s 
principle as well as energy conservation. Across 
numerous fields of science, the heat equation 
seems to be essential. In mathematics, the heat 
equation has been related to Brownian motion 
via the Fokker-Planck equation [22].

Definition 2.6: One dimensional heat equation:

where k is a constant.

MATERIALS AND METHODS
Methods to treat the instability of Lanczos-type 
algorithms have been studied and found in [7]. 
One of them is the restarting strategy. As its 
name suggests, restarting enables us to restart 
the algorithm before it faces  breakdown. In 
this paper, we used two recent proven restarting 
strategies, namely restarting from the iterate 
with the minimum residual norm (RLMinRes) 
and restarting modified embedding interpolation 
and extrapolation model in Lanczos-types 
Algorithms (RMEIEMLA). 

Restarting Lanczos-type Algorithms from the 
Iterate with the Minimum Residual Norm 
(RLMinRes)
This algorithm was proposed in [10] as one of 
the stabilized Lanczos-types for solving large 
dimensions of SLEs. It has been numerically 
proven more robust than the previous restarting 
Lanczos-type investigated in [23]. The idea of 
RLMinRes is that there are some quality points 
that can be considered as a restarting point, one 
of them is the iterate with the minimum residual 
norm. Thus, the algorithm is called RLMinRes, 
[10]. Basically, after running a Lanczos-type 
for  iterations (or after the breakdown), we stop 
the algorithm and collect all the sequences of 
iterates generated by the Lanczos algorithm.  
We then pick one iterate in the sequence which 
corresponds to the lowest residual norm and 
initialize the Lanczos-type algorithm by using 
this iterate. These procedures are formalized in 
the following algorithm.

(4)

(5)

(6)
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Algorithm 1: RLMinRes [10]

1. Fix the number of iterations to say, k and the tolerance, ε, to 1E-13 and run a Lanczos-type algorithm 
[10]

2. Initialization. Choose x0 and y0. Set x=x0, r0 = b - Ax0,y0= y, and z0= r0
3. Collect all k vector solutions and save them in S = {x1,x2,...,xm,…,xk} 
4. Collect all of the residual norms and save them in R={‖r1‖.‖r2‖….,‖rm‖,…,‖rk‖} 
5. Compute the minimum values and specify the index of the minimum value as 
6. Obtain the approximate solution as well as the residual norm as follows

        solmin= xm

        normmin = ‖rm‖

7. While normmin ≥ ε do 

        x = solmin

             y = b - Ax 

8. Run LMinRes [10] for  iterations
9. end while
10. Take solmin as the approximate solution
11. Stop

The value of  k in Algorithm 1 above is a 
fixed maximum value to control our iteration or 
as reasonable stopping criterion if the method 
does not converge. In this study, we use k = 100 
iterations that make up one cycle. While the  is an 
index that stores minimum value of our solution 
(xm)  and minimum value of residual norm (‖rm‖), 
which is the goal of this algorithm to use it as a 
restarting point.

Restarting Modified Embedding Interpolation 
and Extrapolation Model in Lanczos-types 
Algorithms (RMEIEMLA)
RMEIEMLA was studied in [11] as the 
modification of [12]. Different from RLMinRes, 
RMEIEMLA not only used a restarting approach, 
but also predicting the solution generated by 
Lanczos-type algorithms. On RMEIEMLA, 
PCHIP (piecewise cubic Hermite interpolation 
polynomial) is used to interpolate the entries 
of the solutions generated by the Lanczos-type 
algorithms. Then, we extrapolate it to get a new 
approximate solution which gives us a better 
solution as our restarting point. The algorithm of 
RMEIEMLA is presented in Algorithm 2 below.

Algorithm 2: RMEIEMLA [12]
1. Fix the number of iterations to say, k and the tolerance, ε, to 1E-13 and run a Lanczos-type algorithm 

[10]
2. Initialization. Choose x0 and y0. Set x=x0, r0 = b - Ax0,y0= y, and z0= r0 
3. if ,‖rk‖ ≤ ε then
4. The solution obtained
5. Stop
6. else
7. Collect all k vector solutions and save them in S = {x1,x2,...,xm,…,xk}  
8. Choose some j such that m - j ≤ k

7.

9.

3.

6.
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Definition 4.1: Finite difference method of Helmholtz equation:

By applying central difference formula of                 and               to equation (7) we get
 

 
where h is the step size for x and k is the step size for y. Besides, this equation can be also be 

written in terms of  i and j (9), where i and j are the number of steps for x and j respectively.

 

9. Set W = {(tm-j, xm-j),(tm-j+1, xm-j+1),...,(tk, xk)}
10. Interpolate W using PCHIP to get f 
11. Choose t* ∈[m,s]⊂R , where s ≥ m ≥ k is an integer, and calculate x* = f(t*),
12. Calculate the residual norms as follows ‖r*‖ = ‖b-Ax*‖ 
13. end if
14. Obtain a sequence of iterates{xk+1,xk+2,...,xm,…,xs}, where s ≥ k+1, and calculate the residual norms of 

these iterates
15. solmodel = xmodel

16. normmodel = ‖rmodel‖
17. While normmodel ≥ ε do

         x  = solmodel, 

         y  = b-Ax

18. end while
19. Take solmodel as the approximate solution
20. Stop

The  solmodel  is a variable that stores our 
predicted approximate solution and then uses it 
as a restarting point.

RESULTS AND DISCUSSION
Hybrid Model FDM-RLMinRes and FDM-
RMEIEMLA for Solving PDE Problems
We combine the procedure of finite difference 
method (FDM) and stabilized Lanczos-types to 
solve PDE problems. FDM is a classical method 
to discretize PDE form into the algebraic system 
by using the finite difference formula. In this 
study, we use explicit FDM, the reason is as 
an example to show how the FDM-stabilized 
Lanczos-type algorithm can work for PDEs 
problems. Furthermore, we choose explicit 
FDM since it is simpler and easier than implicit 

FDM. In fact, our proposed method can be done 
for PDE problems by using implicit FDM, too, 
and this can be analysed more for future study. 
To achieve our goal, this study has two general 
stages, which discretizes the PDEs problem 
to the system of linear equations (SLEs), then 
solves the SLEs by using the stabilized Lanczos 
methods.

Discretization Form of Helmholtz Equation
Recall Helmholtz equation as in Definition 2.4 
and rewrite it into ∆2u(x,y) + s2u(x,y) = 0, with 
boundary conditions u(x,0) = f(x), u(0,y) = 0, and   
ux(0,y) = g(x), where 0 < x < l, 0 < y < Y while l 
and Y are the endpoints of x and y respectively. 
The discretization process of the Helmholtz 
equation is explained in Definition 4.1 below.

(7)

(8)

(9)

13.

15.
16.
17.



Rehana Thalib et al.    16

Journal of Mathematical Sciences and Informatics, Volume 1 Number 1, December 2021, 11-24

Then set r = k2/h2, rewrite equation (9) in the below form.

Let z=k2s2-2r-2, and by dividing equation (10) with z we get general form of discretized 
Helmholtz equation as equation (11) as follows 

  
Discretization Form of Wave Equation
The one-dimensional wave equation is utt(x,t) = α2[utt(x,t)] with boundary conditions u(x,0) = g(x) and 
ut(x,0) = h(x), where 0 ≤ x ≤ L,0 ≤ t ≤ T. The discretization process of wave equation is explained in 
Definition 4.2 below.

Definition 4.2: Finite difference method of wave equation:

Choose an integer n > 0 to define the points on the x-axis using h = L/n and we choose a time-
step size l > 0. The grid points (xj,tk) are defined by xj = jh and tk = kl, for each j = 0, 1,..., n, and k = 0, 
1,..., n. At any interior grid point (xj,tk), the wave equation becomes

For a short writing, we represent the approximation solution u(xj,tk) by wjk. To discretize the 
above wave equation (12) at the grid point (xj,tk), we approximate the second partial derivatives by 
central differences formula, to get

Let μ=lα/h, then the general discretized form of wave equation is as follows 

Discretization Form of Heat Equation
The one-dimensional heat equation is                        =                                                                                Moreover, 
the boundary conditions are u(0,t) = u (l,t) = 0 and u (x, 0) = f (x), where t > 0 and 0 ≤ x ≤ l. The 
discretization process of the heat equation is explained in Definition 4.3 below.

Definition 4.3: Finite difference method of heat equation:

Choose an integer  m > 0 to be the total number of steps in the x direction and define h = l/m, then 
choose a step size in t direction, k = T/N. The grid points for , where  for  (va, tb) where va = ah for 
a= 0,1,2, ... , m and tb=bk for b =0,1,2, ...  . By using Taylor series in t to form the difference quotient
 

and in x to form the difference quotient

(10)

(11)

(12)

(13)

(14)

(15)

(16)
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The parabolic PDE implies at the interior grid points (va,tb), for each a = 1,2,3,...,m-1 and b = 
1,2,...,we have

Then, substituting the equation above and rearrange for wa,b+1 we get

 

for each a =1,2,3,...,m-1 and b = 1,2,...

Algorithm 3: Hybrid FDM-RLMinRes

1. Set step sizes h and l with a suitable size as to decide the dimension for the SLEs
2. Discretize the PDEs into the algebraic system of linear equations (SLEs) by using FDM
3. Initialization. Choose x0 and y0. Set x = x0, r0= b - Ax0, y0 = y, and z0 = r0

4. Fix the number of iterations to say, k and the tolerance, ε, to 1E-13
5. Run RLMinRes for k iterations
6. While normmin ≥ ε do
7. Initialize the algorithm with

                x = solmin 
                y = b - Ax

8. end while
9. Take solmin as the approximate solution
10. Stop

Algorithm 4: Hybrid FDM-RMEIEMLA

1. Set step sizes h and l with a suitable size as to decide the dimension for the SLEs
2. Discretizes the PDEs into the algebraic system of linear equations (SLEs) by using FDM
3. Form a SLE for the equation obtained at step 2
4. Initialization. Choose x0 and y0. Set x = x0, r0= b - Ax0, y0 = y, and z0 = r0

5. Fix the number of iterations to say, k, and the tolerance, ε, to 1E-13
6. Run RMEIEMLA for k iterations
7. While normmin ≥ ε do
8. Initialize the algorithm with
9. x = solmin

10. y = b - Ax
11. end while
12. Take solmin as the approximate solution
13. Stop.

The Algorithms of Hybrid Model FDM-
RLMinRes and FDM-RMEIEMLA for Solving 
PDE Problems
At this stage, all of the final equations in 
Definition 4.1, 4.2, and 4.3 are solved by 
using RMEIEMLA and RLMinRes algorithms 

as written in Algorithm 1 and Algorithm 2. 
The combination of FDM and the stabilized 
Lanczos algorithms is wrapped in an algorithm 
called hybrid FDM-RLMinRes and FDM-
RMEIEMLA. They are presented in Algorithm 
3 and Algorithm 4 respectively.

(17)

(18)

6.

8.

9.
10.
11.
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Numerical Results
We solved different sized problems of SLEs Ax 
= b, with the matrix A of the system is obtained 
as a result in discretizing the three types of PDEs 
equations by using FDM with different step 
sizes. Then the SLEs is solved by Lanczos-type 
algorithms, in this case, we employed Orthodir 
algorithm which is one of the variants of 
Lanczos algorithms. The implementation of all 

Table 1: Hybrid FDM-RLMinRes and Hybrid FDM-RMEIEMLA for solving PDE Helmholtz

Step Sizes
Dimension

Residual Norms
h k FDM-RMEIEMLA FDM-RLMinRes

0.001000 0.005 999 7.5992e-16 4.7434e-19
0.000100 0.001 1999 9.1676e-18 7.3598e-20
0.000400 0.001 2499 9.3529e-18 3.8711e-18
0.000250 0.001 3999 8.7072e-18 8.4504e-19
0.000200 0.001 4999 8.4967e-18 6.0423e-19
0.000125 0.001 7999 6.7339e-18 1.6175e-19
0.000010 0.001 9999 5.2278e-18 6.8628e-19
0.000020 0.001 19999 9.0806e-18 1.2857e-19

Table 2: Hybrid FDM-RLMinRes and Hybrid FDM-RMEIEMLA for solving PDE waves problems

Step Sizes
Dimension

Residual Norms
h k FDM-RMEIEMLA FDM-RLMinRes

0.0200 0.0200 2401 8.2950e-14 1.9796e-13
0.0143 0.0143 4761 8.4580e-14 1.1569e-13
0.0125 0.0125 6241 9.3549e-14 1.2750e-13
0.0111 0.0111 7921 9.6476e-14 1.0342e-13
0.0100 0.0100 9801 9.6648e-14 1.0718e-13
0.0077 0.0077 16641 1.8329e-13 7.3391e-13

Table 3: Hybrid FDM-RLMinRes and Hybrid FDM-RMEIEMLA for solving PDE heat problem

Step Sizes
Dimension

Residual Norms
h k FDM-RMEIEMLA FDM-RLMinRes

0.6061 0.6250 1024 5.0605e-16 3.9505e-17
0.3279 0.3333 3600 5.8988e-16 9.5831e-17
0.2817 0.2857 4900 6.6275e-16 5.5648e-16
0.2198 0.2222 8100 7.0633e-16 8.7181e-16
0.1980 0.2000 10000 9.7795e-16 9.3454e-16
0.1626 0.1639 14884 8.5897e-16 9.9966e-16

algorithms of this study was done using Matlab 
under Windows. All of results of Hybrid FDM-
RLMinRes and RMEIEMLA are presented in 
Table 1 for the Helmholtz equation, Table 2 for 
wave equation, and Table 3 for heat equation.  
The dimension is based on the step sizes and 
the end points of x- and y- directions for PDE 
Helmholtz, also step sizes, time steps and end 
points of x- directions and time step.
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Moreover, we record and visualize both 
methods in Figure 1- Figure 3. Figures 1, 2, 
and 3 represent Helmholtz equation, wave 

equation, and heat equation, respectively, 
using both Hybrid FDM-RLMinRes and FDM-
RMEIEMLA.

Figure 1: The performance of Hybrid FDM-RLMinRes (left side) and Hybrid FDM-RMEIEMLA (right side) 
on solving PDE Helmholtz

Both hybrid FDM-RLMinRes and hybrid 
FDM-RMEIEMLA involve cycles. One cycle, 
which consists of a maximum 100 iterations, 
represents one run of Algorithm 1 and Algorithm 
2 respectively, and thus the residual norm is 
computed each time restarting. We use cycles 
to point out how many times the algorithm 
restarts until we reach our desired error. As 

can be seen in Figure 1 for instance, the hybrid 
FDM-RLMinRes for solving PDE Helmholtz in 
dimensions of SLE is 7999, needs five cycles, 
whereas hybrid FDM-RMEIEMLA needs three 
cycles. Also, as is clearly seen in Table 1, the 
hybrid FDM-RLMinRes gives a smaller residual 
norm, which means a better approximate 
solution for the Helmholtz problem.
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Figure 2: The performance of Hybrid FDM-RLMinRes (left side) and Hybrid FDM-RMEIEMLA (right side) 
on solving PDE wave

However, in a different case of number of 
cycles with the Helmholtz problem, in wave 
problem, based on Figure 2, the hybrid FDM-
RMEIEMLA needs more cycles than the hybrid 

FDM-RLMinRes to solve the PDE wave. The 
FDM-RMEIEMLA also gives smaller residual 
norms than FDM-RLMinRes in wave problems, 
this can be seen in Table 2.
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Figure 3: The performance of Hybrid FDM-RLMinRes (left side) and Hybrid FDM-RMEIEMLA (right side) 
on solving PDE heat problem

As for the heat problem, based on Figure 
2 and Table 3, we find a similar explanation of 
cycles as the Helmholtz problem, that the hybrid 
FDM-RLMinRes needs more cycles and gives 
smaller residual norms than the hybrid FDM-
RMEIEMLA.

DISCUSSION
Overall, the residual norms of approximate 
solutions generated by both hybrid FDM-

RMEIEMLA and hybrid FDM-RLMinRes were 
small. Both methods work well in overcoming 
breakdown issues and in its application on solving 
various PDEs problems, namely, Helmholtz, 
wave, and heat equations. However, it can be 
seen in Table 1 and 3 that FDM-RLMinRes 
performed slightly better in Helmholtz and heat 
equations. While for the wave equation problem, 
FDM-RMEIEMLA performed better. This 
shows that the greater number of iterations used 
in the algorithm, the smaller the residual norms, 
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which gives us better approximate solutions. For 
future study, we suggest applying these methods 
on implicit scheme FDM and for other PDEs 
boundary problems besides rectangular domain, 
i.e., circular domain. Moreover, we suggest 
solving PDEs problems in higher dimensions, 
that will give better accuracy if the value of time 
step and step size is very small.

CONCLUSION
We have implemented the hybrid FDM-
RLMinRes and hybrid FDM-RMEIEMLA 
for solving various PDE problems which 
include Helmholtz, wave, and heat equations. 
Experimentally, the proposed hybrid methods 
resulted in good performance with small residual 
norms on the solutions of the PDE problems. 
This can be shown in numerical results, overall, 
the hybrid FDM-RMEIEMLA and hybrid FDM-
RLMinRes computed the approximate solutions 
of the three PDE problems accurately.
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